第四,经济测度对计量经济学的学科发展有重要的推动作用。首先,经济测度的质量决定了计量经济学实证分析的结论的科学性。其次,经济数据,特别是经济数据的类型,对计量经济学学科发展影响甚巨。举几个例子。首先是经济数据观测的误差(Measurement errors),对计量经济学的推断,包括参数估计和参数假设检验,有很大的影响,如导致不一致的参数估计(参见洪永淼(2011,第七章第一节))。为了研究测度误差的影响,计量经济学很早就有了一个分支,即变量误差(Errors in variables)的计量经济学。当然,变量误差也可能由其他因素而非测度误差引起。第二个例子是时间序列计量经济学的发展。Nelson & Plosser(1982)在一个实证研究中发现,绝大部分宏观经济时间序列,包括GDP、CPI和股票价格,都是非平稳时间序列。这对当时的以平稳时间序列作为主要研究对象的时间序列计量经济学提出了挑战,因为平稳时间序列计量经济学的理论与方法,不适用于分析非平稳时间序列。后来的单位根(Phillips (1987))和协整(Engle & Granger (1987))等现代时间序列经济学理论,就是为了研究非平稳时间序列而发展起来的。第三个例子是不完全识别计量经济学(Partial identification econometrics)。在微观经济数据中,有一些经济变量不能获得精确测度,比如在美国问卷调查一个人或家庭收入时,因各种原因只能调查收入处于哪个区间,不能获得出一个精确测度。这种不精确经济测度,对计量经济学实证研究造成了很大影响。特别地,在估计计量经济模型参数值时,不能获得点估计,只能得到区间估计。这种统计推断的方法因而催生了一个新的计量经济学分支,即部分或不完全识别计量经济学(详细讨论参见Manski (1995,2003))。第四个例子,在大数据时代,各种原来没办法获得的数据,现在通过现代信息技术可以得到,比如在金融市场,可以获得每笔交易数据,即tick by tick data,每次交易的价格、交易量以及交易的时间点,都可以完整地记录下来。这种新型的交易数据,包含很多交易行为和市场微观结构的信息(参见O’hara (1995))。除金融市场外,超级市场或商店通过信用卡完成的交易,其交易以及交易者的信息,也同样可以获得。对这种实时交易数据进行计量经济学建模及推断,产生了一个新的计量经济学分支——超高频数据计量经济学(Econometrics of ultra-high frequency data)。更多讨论参见Engle (2000)和Engle & Russell (1998)。最后一个例子是面板数据(panel data)。以前大部分经济数据,要么是时间序列数据,要么是横截面数据。现在,越来越多的二维数据,即对每个横截面单位(如个人、家庭、国家等),可以在不同时期跟踪并测度。这种二维数据称为面板数据。一个很著名的例子,是美国密歇根大学PSID调查数据 。这个数据库调查了很多美国的个人和家庭,而且在不同时期跟踪测度,对研究美国劳动力市场与收入分配发挥了重要作用。这种数据推动了面板数据计量经济学(panel data econometrics)的发展。实际上,不仅是面板数据,现在也可每天观测到一个曲线,如IBM股票价格每天从开盘到收盘随时间变化的曲线,又如不同城市每天温度随时间变化的曲线,这些在统计学上称为函数数据(functional data),有相应的统计模型;更多讨论参见Ramsey & Silvema (2005)。上面几个例子表明,数据的类型,即经济测度的类型,在很多方面都推动了计量经济学学科的发展,这其实是经济统计学对计量经济学发展的影响和重要贡献。5
第五,一个多世纪前,有一位美国学者说过,统计思想与统计思维总有一天会和要求一个人能够读、写一样,是一个人在现代社会中所具备的基本能力。培养大量具有经过系统训练的经济统计人才,对完善一个国家的治理体系与提高治理能力是非常重要的。中国经济统计学的一个重要任务就是培养大量高素质、具有系统的经济统计学训练的专门人才,推动中国市场化经济转型、提高宏观与微观经济管理水平,提高中国国家社会治理水平。尤其是,现代社会是信息爆炸的社会,这需要培养大量懂得搜集数据、分析数据、解释数据、基于数据进行决策与管理的经济统计人才。
第四节如何推动经济统计学的发展?
那么,如何在新的历史条件下提升与发展经济统计学呢?第一,坚持经济统计学是经济测度学这个基本学科定位。经济统计学用数字描绘各种经济现象、各种经济主体、各个经济部门和各个不同层次在不同时间的动态全景图像。经济统计学的最主要任务是经济测度方法论的创新,发展能够更精确地测度经济现象、经济行为和经济变量的理论方法与工具,并应用于实践。这个基本定位将保证经济统计学在经济学中的基础地位,从而不会受到包括数理统计学和计量经济学在内的的其他相关学科在中国兴起的可能冲击与影响。一些学者曾提出广义经济统计学的建议,将作为推断方法论的计量经济学作为其中一部分。这种想法符合统计学的范畴定义,即如统计学分为描述统计学和推断统计学那样,经济统计学也可分为经济测度学和计量经济学。然而,由于历史的原因,计量经济学作为一个学科在国外已有80多年历史,在中国也有30多年发展历史。如果将计量经济学作为经济统计学的一个组成部分,有可能会出现计量经济学取代经济统计学的情形。因此,坚持经济测度学的基本定位可以更加明确经济统计学的学科特色,有利于经济统计学的长远发展。在这方面,邱东(2013)对国民经济统计学科定义与内涵、外延发展,做了精确阐述。事实上,在国外,经济统计学主要也是定位在经济测度学方面。第二,发展经济统计学必须立足本土化。在中国,经济统计,特别是现代统计学意义的经济统计,历史不是很长。中国地大物博、不同地区之间、城乡之间与不同群体或阶层之间差异巨大,经济统计不但水平较低,而且面临的挑战与困难也特别巨大。这种基本国情为在中国发展经济统计学提供了一个很大的空间,比如,关于宏观经济数据的构建,一个重要问题是处理季节性因素。在西方的经济统计工作中,季节性因素对经济变量的影响,比如感恩节、圣诞节、元旦等等,其处理都有一套成熟的方法,但是这些方法并不完全适合一些具有中国特色的季节性因素。比如中国的端午节、中秋节、春节,都是根据中国农历而定,而不是根据西方公历而定的季节性因素。这些季节性因素的处理方法将与国外季节性因素的处理方法有所不同,这是中国特色(见张晓峒和徐鹏(2013))。又如,中国在过去30多年,成功地从计划经济模式转为市场经济模式。但是,与西方发达国家相比,中国市场经济发育、成熟的程度还比较低。中国经济统计学家能否提出一套刻画中国市场经济发展成熟程度的指标,以测度中国市场经济完善的程度?还有,中国过去30多年,以要素投入为主要特征的粗放型经济增长模式已经面临一个转折点。中国经济必须经济转型,以确保持续稳定发展。对中国过去30几年粗放型经济增长模式所带来的一些不可持续的因素制约,如对环境的污染的经济成本,在统计方法上还没有一个系统的、有说服力的量化描述与估计。最后,中国正处于实现以民族复兴、人民幸福为主要内容的“中国梦”过程中。对中国梦的量化指标的构建,包括对人民幸福感指数的构建,也是中国经济统计学家,计量经济学家与经济学家可以做的具有理论与现实意义的研究工作。总之,立足本土、立足中国国情、服务国家社会经济发展需要,将使经济统计学焕发出巨大的发展活力。第三,大力促进学科交叉与融合,通过学科交叉与融合,推动中国经济统计学的发展与现代化。上一节在描述经济统计学的重要作用时,讨论了经济统计学对发展其他学科,特别计量经济学的重要作用。同样地,包括经济理论、计量经济学、概率论与数理统计学在内的其他相关学科的发展,对发展经济统计学也有很大的推动作用。前面提及,著名经济统计学家钱伯海在他的晚年,集中精力从事社会劳动价值论的研究,就是他从经济统计学研究中深深感受到要发展经济统计学,特别是国民经济综合平衡核算体系,必须有新的经济理论作为指导。作为经济测度学,经济统计学不可避免地涉及到统计抽样调查。在这方面,数理统计学特别是抽样理论的最新发展可以提供很大帮助。在国民经济统计学中,对宏观经济变量的测度,以及对宏观经济变量之间的数量关系的描述及解释,也需要经济理论的指导。宏观经济变量是微观经济变量在一定时期内的加总(Aggregation)。由于微观个体的异质性,加种以后的宏观经济变量的性质,以及宏观经济变量之间的数量关系,与原始的微观经济变量以及它们之间的关系可能有很大的不同。在微观经济学中,一个著名的例子,就是需求函数,即微观个体需求与个体收入之间的关系,如果对微观层面个体的需求函数加总,所获得的总需求与总收入之间关系与原来个体的需求函数将有所不同,除非微观个体消费者的效用函数满足所谓的 Hypathetic utility function假设(参加Varian (2006))。由此可以看出,对宏观经济变量的测度(类似加总)之后,如何理解宏观经